## Addition Year 1

Focus: Adding with 1 digit and 2 digit numbers to 20, including 0.
In year 1 the children will build on their knowledge of numbers to 20 from the Foundation Stage. They will begin by using simple strategies to add two group of objects together and move onto recording their number sentences orally and written.

Before moving onto addition children need to be able to:
Form numbers 0-10 (then to 20) Say
numbers in order (at least to 10 )

|  | Children begin to add units together using physical objects e.g. Maths makes sense cups, counters, Numicon shapes. <br> They count each object to find how many altogether. <br> Teacher models the language e.g. ' 3 cups add 6 cups equals 9 cups altogether'. <br> They begin to record by drawing pictures/marks. |
| :---: | :---: |
| $8+2$ | The teacher models what the adding of two groups looks like in a number sentence. <br> The children begin to copy these number sentences onto whiteboards whilst still using objects to add. |
| $2+3=5$ <br> $2+2=8$ <br> $6+5=8$ | The children become more independent and start to write number sentences into their maths books (squared maths paper) ensuring one digit in each box. Note: Leave a line after each number sentence for children to polish if needed. |
| $\begin{aligned} & 6+5=11 \\ & 9+4=13 \\ & \hline \end{aligned}$ | Children begin to add numbers that bridge 10 using the same strategies. <br> Introduce language of tens and units. Continue to use objects e.g. Numicon. |
| $\begin{aligned} & 10+6=16 \\ & 12+3=15 \end{aligned}$ | Children start to add a 1 digit number to a 2 digit number within 20. <br> Objects are still used to help the addition process. Begin to bridge 20. |
|  | Children are shown how to add using a number line. They record their findings orally to begin with before moving on to drawing the jumps themselves. Note: Each jump is one unit. |
|  | Partial numberlines are then used as a transition to open number lines. |
| Key Vocabulary <br> Add, more, plus, make, altogethe addition, number sentence | most, count on, numberline, tens, units, |

## Focus: Adding two $\mathbf{2}$ digit numbers

In year 2 children will move onto using an open number line to add 1 and 2 digit numbers. They will learn how to partition 2 digit numbers.
The children will move onto adding using
an open numberline to add a 1 digit
number to a rounded 2 digit number e.g.
lo $7=$.

## Addition Year 3

## Focus: Adding with numbers up to $\mathbf{3}$ digits

In year 3 we will move to the traditional column method and to support this, children will first apply their partitioning skills to the partitioning column method.

| $\begin{aligned} & 246+132=378 \\ & 200+40+6 \\ & \frac{100+30+2}{300+70+8}=378 \end{aligned}$ | Introduce the partitioning column method with numbers that do not bridge so children become confident with the method itself. <br> Please Note: Start by adding the units first. |
| :---: | :---: |
| $\begin{aligned} & 337+188=525 \\ & 300+30+7 \\ & 100+80+8 \\ & 400+110+15=525 \end{aligned}$ | Once confident, children can start using the partitioning column method to solve problems that bridge the tens and hundreds boundaries. |
| $\begin{array}{r} 343 \\ +116 \\ \hline 400 \\ 50 \\ +9 \\ \hline 459 \\ \hline \end{array}$ | Children can use the expanded column method for addition. |
| $\begin{aligned} & 116+343=459 \\ & 343 \\ & +116 \\ & \hline 459 \end{aligned}$ | Now children are ready to move on to the traditional column methods. Introduce this initially with numbers that do not bridge any boundaries. It is important children remember that it is three hundred add one hundred, NOT $3+1$ ! |
| $\begin{aligned} & 245+84=329 \\ & 245 \\ & +84 \\ & \frac{329}{1} \end{aligned}$ | Once the method is secure children are now ready to be introduced to 'carrying' which happens when bridging in the column method. Make sure children add the units first and 'carry' numbers under the bottom line. |
| Key Vocabulary Add, more, plus, and, count on, numberline hundreds boundary, | qual to, equals, the same as, double, most, n, addition, column, tens boundary, panded, compact |

## Addition Year 4

## Focus: Adding with numbers up to 4 digits

In year 4 children will consolidate their use of the traditional column method and will be able to use it confidently to add numbers up to 4 digits. This could include carrying units, tens and hundreds.

| $4267+1584=5851$ <br> 4267 <br> +1584 <br> $\frac{5851}{11}$ | Children should already be familiar with the <br> column method from year 3 but it is very <br> important to go over the method again <br> ensuring children understand why they start <br> with the units, have to carry a number etc. <br> Please Note: <br> 1) The units must be added first! <br> 2) 'Carry' numbers underneath the bottom <br> line! <br> 3) Reinforce the place value! It is not 6 add <br> 8, it is 6 tens add 8 tens! |
| :--- | :--- |

## Key Vocabulary

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, numberline, sum, tens, units, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact, thousands, hundreds, digits, inverse.

## Addition Year 5

## Focus: Adding with more than 4 digits

In year 5 children will now use the column method to add decimal numbers in the context of money and measures. It is important that children have place value skills beyond 4 digits here and fully understand what a decimal number represents.
Children should be working with numbers
greater than 4 digits including numbers in
the ten thousands and hundred thousands.

## Year 6 Addition

Focus: Adding several numbers with an increasing level of complexity
In year 6 children need to use all the previous adding skills developed to add several numbers with a variety of different decimal places. Many of these problems will be in the context of money or measures.
2

## Key Vocabulary

Add, more, plus, and, make, altogether, total, equal to, equals, the same as, double, most, count on, numberline, sum, tens, units, partition, addition, column, tens boundary, hundreds boundary, increase, vertical, carry, expanded, compact, thousands, hundreds, digits, inverse, decimal place, decimal point, tenths, hundredths, thousandths, integer

## Subtraction Year 1

Focus: Subtracting with 1 digit and 2 digit numbers to 20 , including 0.
In year 1 the children will build on their knowledge of numbers to 20 from the Foundation Stage. They will begin by using simple strategies to subtract from a group of objects and move onto recording their number sentences orally and written.

|  | Children begin to subtract units from a large group using physical objects e.g. Maths makes sense cups, counters, Numicon shapes. <br> They count each object to find how many left. <br> Teacher models the language e.g. ' 6 cups take away 3 cups equals 3 cups'. <br> They begin to record by drawing pictures/marks. <br> The teacher models what the subtraction |
| :---: | :---: |
|  | The teacher models what the subtraction looks like in a number sentence. <br> The children begin to copy these number sentences onto whiteboards whilst still using objects to help them subtract. |
| $\begin{array}{\|l} 8-6=2 \\ 4-1=3 \\ \hline \end{array}$ | The children become more independent and start to write number sentences into their maths books (squared maths paper) ensuring one digit in each box. Note: Leave a line after each number sentence for children to polish if needed. |
| $\begin{aligned} & 10-3=7 \\ & 12-5=7 \end{aligned}$ | Children begin to subtract numbers that bridge 10 using the same strategies. A 1digit number is subtracted from a 2 digit number. <br> Introduce language of tens and units. Continue to use objects e.g. Numicon. |
|  | Children are now shown how to subtract using a number line. They record their findings orally to begin with before moving on to drawing the jumps themselves. Note: Biggest number is circled and children jump back along the number line to find the answer. Jumps are one unit each. |
|  | Partial numberlines are then used as a transition to open number lines. |
| Key Vocabulary <br> Take away, less, minus, subtract, how many more, how many fewer/less than, most, least, how many left, partition, tens, units, digit |  |

## Subtraction Year 2

## Focus: Subtracting with two 2 digit numbers

Children will begin to count back using a blank numberline to subtract. They will use these methods both written and mentally.

| $9-5=4$ | Once the children are confident using a tracked numberline, they will be shown how to use a blank numberline. They will start by subtracting units in (backward) jumps of one. |
| :---: | :---: |
| $10-5=5$ | Children now bridge 10 when subtracting units from a two digit number under 20. |
|  | Partitioning is taught (or recapped) so that children can start to subtract two 2 digit numbers. |
|  | Children are now ready to subtract tens and units on an open number line. <br> Note: Jump large tens and small units. Biggest number goes at the end of the numberline. <br> Only the smaller number needs to be partitioned. |
|  | Continue to increase difficulty by subtracting larger numbers with multiple tens. <br> Note: Work with numbers up to 100 . |

## Key Vocabulary

Equal to, take away, less, minus, subtract, difference between, how many more, how many fewer/less than, most, least, count back, how many left, count on, partition, tens, units, digit

## Subtraction Year 3

## Focus: Subtracting with 2 and $\mathbf{3}$ digit numbers

Children will consolidate their knowledge of counting back and counting on using a blank numberline to subtract. They will use these methods both written and mentally. Once children become fully confident they will be ready to move on to the partitioning column method of subtraction.
Children will continue to subtract on a
numberline using efficient jumps and now
apply these to 3 digit number problems.
Here is an efficient example of 340 - 127

## Key Vocabulary

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, units, exchange, decrease, hundreds, value, digit

## Subtraction Year 4

## Focus: Subtracting with numbers up to 4 digits

Children will consolidate their knowledge of the partitioning column method for subtraction with 4 digit numbers including those where exchanging is required. Once they are secure with this they will move on to the compact (traditional) method of column subtraction.


Children will consolidate their learning of the partitioning column method of subtraction and exchanging by solving calculations with more complex numbers. Place value counters will come in handy here when building children's confidence. Money can also be partitioned for subtraction e.g. $£ 1+30+5-£ 1+10+2=$

Once confident children are ready to move on to the compact method of subtraction. Encourage children to complete a calculation in the partitioning column methods and then model compact method. See if children can see how they are linked and discuss which is simpler. Although this is seen as the 'easiest' method it does not mean that it is necessarily the best method and they need to carefully select the best method for the problem they are solving.

## Key Vocabulary

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, units, exchange, decrease, hundreds, value, digit, inverse.

## Subtraction Year 5

Focus: Subtracting with numbers beyond 4 digits including decimals
Children in year 5 will continue to use the compact column method of subtraction to solve problems including those where exchanging is required. They will subtract larger integers and begin to subtract decimal amounts.


## Subtraction Year 6

Focus: Subtracting with increasingly complex numbers including decimals In year 6, children need to use mental methods and the compact column method of subtraction to solve an increasingly complex range of calculation including those with integers, those with decimals and those with mixed numbers.

(2) | Children will use the compact method |
| :--- |
| to solve problems involving integers |
| up to 6 digits and beyond and solve |
| problems where they will need to use |
| exchanging' several times. |

## Key Vocabulary

Equal to, take, take away, less, minus, subtract, leaves, distance between, difference between, how many more, how many fewer/less than, most, least, count back, how many left, how much less is_?, count on, strategy, partition, tens, units, exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal place, decimal

## Multiplication Year 1

## Focus: Solving one step multiplication problems.

In year 1 children will begin to learn how to multiply. They will work on simple multiplication problems using tangible objects and pictorial recording.

Before moving on to multiplication, children need to be able to ...

- Have a secure understanding of addition and subtraction
- Begin to count in multiples of $2,5,10$
$\left.\begin{array}{l|l|}\hline\end{array} \begin{array}{l}\text { Repeated addition will be taught as } \\ \text { another strategy to multiplication. } \\ \text { lhysical objects/drawings used to } \\ \text { aid working out. }\end{array}\right\}$


## Multiplication Year 2

## Focus: Solve problems involving multiplication

In year 2 children will move on from basic multiplication arrays and will be taught different strategies including repeated addition and mental methods.

Throughout the year children should be working on learning their 2, 5 and 10x tables in a range of different ways.

| Group size x number of groups = product. | Children will be shown that multiplication of two numbers can be done in any order (commutative) and will use arrays to represent this. Physical objects/drawings used to aid working out. |
| :---: | :---: |
| $\begin{aligned} & 3 \times 2= \\ & +3 \sqrt{+3} 6 \end{aligned}$ | Repeated addition moves on to using an open number line. <br> Group size x number of groups = product. |
| e.g. $9 \times 4=$ <br> $7 \times 6=$ <br> (draw array/use open number line) | Children continue to master these strategies until they can confidently multiply a 1 digit number with a 1 digit number. |
| Key Vocabulary <br> Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, tens, units, value |  |

## Multiplication Year 3

## Focus: Multiplying 2 digit numbers by 1 digit numbers

In year 3 children will move on from arrays and start using the grid method of multiplication. It is essential that before children move onto the grid method they are completely confident with all previous methods and have a solid grounding with mental methods and partitioning.

Before moving on to grid multiplication, children need to be able to ...

- ?Partition numbers into tens and units
- ?Multiply single digits by multiples of $10(3 \times 30=90)$.
- TQuickly recall multiplication facts for the $2,3,4,5,6$ and $10 \times$ tables.
- Use any previous method to work out unknown multiplication facts, quickly and
- accurately.



## Multiplication Year 4

Focus: Multiplying 2 and $\mathbf{3}$ digit numbers by $\mathbf{1}$ digit numbers
In year 4 children need to use the grid method confidently to solve problems where a 2 or 3 digit number is multiplied by a one digit number. They need to move on to the use of short multiplication to solve 3 digit number multiplied by 1 digit problems.

|  |  |  |  | The grid method is extended in year 4 so children will now multiply 3 digit numbers by 1 digit numbers. When adding the 3 answers up to create a total, column addition could be used to ensure accuracy, especially where bridging will be needed. |
| :---: | :---: | :---: | :---: | :---: |
| X | 600 | 10 | 3 |  |
| 5 | 3000 | 50 | 15 |  |
| Add up 3000,50 and 15 to make 3065.  <br> $613 \times 5=3065$ addition could be used to ensure accuracy, <br> especially where bridging will be needed. |  |  |  |  |
|  |  |  |  | The compact 'short multiplication' method is tricky and needs to be approached carefully. At first children should solve a problem using grid method and then observe the teacher solve a problem using short multiplication and make comparisons. How are they similar? Children need to go through it very slowly and carefully, unpicking each step until they are fully confident. |
| It is at this stage that approximation and estimation should become a regular part of classroom practice. Children should approximate an answer before using a method so they know if there answer is accurate or not. $253 \times 9$ is approximately $250 \times 10=2500$ |  |  |  |  |
| Key Vocabulary <br> Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times, partition, grid method, multiple, product, tens, units, value, inverse |  |  |  |  |

## Focus: Multiplying up to $\mathbf{4}$ digits by $\mathbf{1}$ or $\mathbf{2}$ digits

In year 5 children will continue to use short multiplication to solve increasingly richer problems that involve multiplying by 1 digit. They will then move on to long multiplication for problems that involve multiplying by 2 digits. Approximation will play an important partwith children making approximations before using long multiplication to help check their answer is correct.


## Multiplication Year 6

Focus: Consolidating short and long multiplication, multiplying decimals by 1 digit In year 6 children will consolidate all they know about short and long multiplication before they go to Secondary school. They will also learn the new skill of using short multiplication to multiply decimal numbers to 2 decimal places.
Key Vocabulary
Groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated
addition, column, row, commutative, sets of, equal groups, times as big as, once, twice,
three times, partition, grid method, multiple, product, tens, units, value, inverse, square,
to remember that the digit you are
multiplying by needs to be lined up with
the ones digits. As with all decimal work,
the decimal points must be lined up and
the children need to have a clear
understanding why that is.

## Division Year 1

## Focus: Solve one step division problems.

Children in year 1 will begin to learn how to divide. They will work on simple division problems using tangible objects and pictorial recording.
The children will start by sharing
objects between set groups (2's, 5's
and 10's) e.g. 12 sweets shared
between 2 children. They will discuss
how to share equally
so no group has more or less.
(2's, 5's and 10's)

## Division Year 2

## Focus: Solve problems involving division

Children in year 2 will continue to work on basic division strategies and will learn that division is not commutative.
The children will continue sharing
objects between set groups (Any
number up to 12) e.g. 16 sweets shared
between 8 children. They will discuss
how to share equally so no group has
more or less.

## Division Year 3

Focus: Dividing 2 digit numbers by 1 digit numbers moving from numberline methods to short division
Children in year 3 will continue to use a numberline to solve division problems and will begin to jump more than one step at a time in the style of 'chunking'. Once confident they will move on to short division without any remainders.
Children will begin to use the grouping
numberline method to solve problems
with remainders. They will start on zero
and write the dividend at the end of
their numberline. They will jump in
steps of the divisor until they get as
lose to the end as possible. Whatever
is left over is the remainder. Using
cubes or arrays alongside the
numberline will consolidate
understanding.

## Division Year 4

## Focus: Consolidating and extending use of short division

Children in year 4 will continue to use short division to solve division problems. They will begin to work on remainders, including problems where there are remainders in the first numbers but not in the final answer.
Once confident with the method of short
division, they will move on to problems
where the first digit of the dividend is
not a multiple of the divisor and
therefore a remainder will need to be
carried. Children may need to use other
equipment to calculate the division and
multiplication facts required.

## Division Year 5

Focus: Extending use of short multiplication to 4 digits and remainders
Children in year 5 will use short division to solve problems up to 4 digits long. For the first time they will use short division to solve problems that have a remainder in the final answer.


In year 5 children will begin to solve division problems where a number up to 4 digits is divided by a single digit number including answers with remainders. These division problems need to be contextual so the children learn how to express the remainder- as a number, a fraction, a decimals, rounded up or rounded down.

## Key Vocabulary

Share, share equally, one each, two each..., group, groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, carry, remainder, multiple, divisible by, factor, quotient, prime number, prime factors, composite number (non-prime)

## Division Year 6

Focus: Using short division to divide 4 digit numbers and express remainders as decimals and long division for dividing 2 digit numbers
In year 6, children will use short division to divide decimal numbers by single digit numbers. The final step of division will be long division which will be used to divide numbers by 2 digits.
The focus in year 6 is not so much the method of short division but how the remainders are expressed- children need to express remainders as decimals and fractions- depending on the context of the question.
The remainder in this answer would have been
1 but it has been expressed as a decimal. To do
this, children need to insert a decimal point
next to the units and carry the remainder over
the decimal point. Zeroes are inserted to the
right of the decimal point to show that there
was no value.

